寧國志誠機械,鑄造自動化設備,鐵水自動澆注機、鐵型覆砂,生產線,澆注機,鑄球,耐磨鋼球,模具,熱處理淬火,
寧國市志誠機械制造有限公司
 
新聞詳情

廢鋼加增碳劑熔煉球鐵的方法

瀏覽數:43 


受焦炭價格不斷上升、環保以及用戶對鑄件質量要求越來越高等因素的影響,電爐在很多地方已經取代了沖天爐。又由于生鐵價格的不斷上升,廢鋼在社會上沉淀存留量較多而價格較低,所以這幾年廣泛的用廢鋼加增碳劑的方法生產球鐵及灰鐵。如果工藝操作正確,不但可以提高鑄件的綜合物理性能質量,同時也降低了生產成本。

用電爐冶煉廢鋼加增碳劑生產鑄鐵件,盡管電爐便于化學元素含量的調整,而且主要元素可以調整到材質要求的范圍之內,但是如果不采取有效的處理手段,生產出鑄件的質量,確與用沖天爐生產出的鑄件質量有較大差異。最主要的不同之處就是:用電爐熔化的鐵液,無論是廢鋼加增碳劑或者是用鐵屑作爐料,生產出的鑄件白口傾向大,硬度高而精加工困難。本文就此談談自己的實踐體會和認識。

沖天爐熔煉的鐵液

沖天爐是用焦炭作燃料,將固體的鐵塊和其它爐料,經過預熱、熔化、過熱、還原,最后鐵液經爐底流入前爐缸,所經歷的時間很短,大約10min左右,鐵液往往要在前爐缸中停留一段時間,在這段停留時間里,對金屬液的增核是有利的。雖然沖天爐的出爐溫度一般在1450℃左右,但是鐵液經過過熱區的瞬間,爐溫約1700℃,盡管鐵液通過過熱區的時間很短,卻是以細小液滴通過的,能得到高溫過熱,有助于石墨溶于鐵液,消除新生鐵中粗大石墨片的遺傳性。鑄鐵中的主要元素碳,在熔煉過程中有一個燒損和吸收的減增過程,由于鐵液滴在灼熱的焦炭上,鐵液就吸收了焦炭中的碳原子,所以在整個熔化過程中,碳的吸收大于燒損,最終含碳量是增。同樣鐵液也會從焦炭中吸收部分硫。

 在壓球化劑作球化處理之前,都要先燙包。由于沖天爐的熔化速度快,當**包球鐵澆注完畢后,再處理下一包時,包內溫度還很高,鐵水倒入澆包內降溫少,所以再進行球化處理時,出爐溫度與電爐相比較可以稍低些,對球化處理質量(球化劑的熔化及吸收、澆注溫度),影響不大或沒有影響。用電爐熔化鐵液,每爐熔化間隔時間約50~60min,有時間隔的時間可能會更長些,澆包散熱時間長,包內溫度低,經球化處理后,包內鐵水溫度約下降80℃,冬天溫度下降的可能會更多,所以用電爐熔化鐵液處理球鐵時,出爐溫度要比沖天爐的溫度高些。

2用電爐熔煉鐵液對材質性能的影響

我們知道用電爐熔煉爐料,是由感應圈經導電產生磁場,在爐料中產生電渦流,由電渦流發熱藉以熔化爐料。

2.1、對“自發晶核”的影響

廢鋼的熔點比鑄鐵高,增碳劑的熔點更高,當廢鋼在熔化過程中以及熔化之后,增碳劑被加熱緩慢的溶解和擴散,增碳劑中的碳才能被鋼液侵蝕吸收。鋼液逐漸的變成鐵液,即常稱之為“合成鑄鐵”。由于廢鋼熔化溫度高,鋼液變成鐵液之后的過熱溫度往往就高。在高溫下,鐵液中的碳易于被氧化成CO,因此有人認為鐵液中的碳也是一種“氣體形成元素”。CO在鐵液中的溶解度很少,形成后即釋放于鄰近液面的大氣中。在生產實踐中我們會發現,當高溫鋼液倒入抬包后,抬包中有放射狀火花飛出(俗稱賊花),即可能是高溫氧化的釋碳現象。

電爐在熔煉鐵液過程中,具有電磁攪拌摩擦的特性。鐵液過熱溫度高、過熱時間長、且又有感應電流的攪拌摩擦,鐵液中微細的晶態石墨即自發晶核和外來結晶核心,都會逐漸溶于鐵液而消失;或浮經液面與集渣劑粘裹在一起被挑出爐外。這樣,使鐵液中可在共晶結晶時作為石墨外來晶核的物質大幅度減少。

硫在鑄鐵中,尤其是在球墨鑄鐵中是有害元素。但有資料介紹:當含硫量小于0.06﹪時,硫的一些有益作用就無法得到發揮。在鑄鐵中存在有細小而分散的硫化物夾雜,能在石墨的生核和成長中起積極而有益的作用。用感應電爐熔煉廢鋼加增碳劑的合成鑄鐵,其最終含硫量一般不會超過0.03%的。如果原鐵水的含硫量過低,球化劑中的鎂就無從與硫化合,過多的殘余鎂量不但阻礙石墨化,而且還會使鑄件產生縮孔、氣孔等鑄造缺陷。如果減少球化劑的加入量,綜合考慮又恐會影響到球化率。

合成鑄鐵在感應電爐中,因含硫量過低、過熱溫度高、電流的攪拌摩擦等因素影響,鐵液中石墨化的核心大幅度減少。這種缺乏石墨化結晶核心的鐵液,過冷度很大,對孕育處理的回應能力極差,很難通過常規孕育處理措施,使鑄鐵具有符合要求的微觀組織。因而即使化學成分含量完全符合要求,往往澆注出的鑄件硬度高,不便于機械加工。有資料介紹:硫從0.02%增加到0.06%,抗拉強度增加50MPa以上,即可提高一個牌號以上,硬度值即可增加HB20。進一步增加硫到0.1%,強度值和硬度值變化不大,有此可見在灰鑄鐵中,硫控制在0.06~0.1%為宜(我廠生產的汽車制動鼓,材質是HT250,硫控制在0.07~0.09%)。

順便也談談用電爐熔煉“鑄鐵屑”,即便熔煉的鐵屑干凈無銹蝕,不需要高溫,過熱溫度并不是很高,但是由于電磁攪拌的摩擦作用以及碳、硅的燒損,如果澆注前不進行元素調配和采取有效的孕育措施,生產出的鑄件同樣是硬度高。

感應電爐熔煉對提高材質質量的影響

感應電爐熔煉,鐵水溫度可升以提到1570℃以上,并可以在高溫狀態下長時間的保溫,在該溫度下,可以使原材料帶入的夾雜物,以及在熔煉過程形成的夾渣及夾雜物上浮至鐵液表面。對于廢鋼+增碳劑、尤其是粒子鋼+廢鋼+增碳劑+回爐料,這些爐料無論是廢鋼、粒子鋼或者是粒子鐵,大都是白口組織,白口組織具有較強的遺傳性,要消除遺傳性就需要適當的提高熔化溫度,增加保溫時間,才能夠比較好的凈化鐵液,減少鑄件缺陷。

合金元素燒損量低,鐵水中錳、硅的燒損低于沖天爐熔煉。便于各元素的調控,能夠穩定化學成分含量。

生產球墨鑄鐵時,含硫量過高將會直接影響到球鐵的質量。如球化級別低下、材質強韌性差、鑄件有夾渣等鑄造缺陷。用電爐熔煉鑄鐵時不存在有增硫反應。

用廢鋼+增碳劑生產合成鑄鐵,由于廢鋼的夾雜物含量低,成分穩定,加增碳劑經高溫熔煉之后,消除了爐料的遺傳性,鐵液的純凈度得到提高,同時增碳劑具有孕育作用,促使石墨化的效果更加穩定突出,鑄件的基體組織晶粒會更加均勻、細化,所以生產出鑄件材質的韌性和強度均得到提高。

用廢鋼生產球墨鑄鐵的優點前面已談,就不再贅述。

用電爐熔煉廢鋼(鐵屑)+增碳劑生產球墨鑄鐵,欲想穩定產品質量,需要補的“短”,主要是解決金屬液在凝固結晶時,自發晶核少、鐵液過冷度大、石墨化能力差、鑄件硬度高而不便于機械加工的問題。具體的“補短”操作方法是:在冶煉后期要注意“自發晶核”的培養。加入適量的廢鋼使鐵液激冷,同時適量的加入硅鐵以及細顆粒的增碳劑,上面覆蓋保溫劑,降低功率或停電保溫一段時間,以促使析出微細的晶態石墨。

在出爐或澆注過程中,進行充分的多次孕育處理,以補充“外來晶核”,可以添加小顆粒的增碳劑、碎硅鐵粉粒以及復合孕育劑,雖然加入量很少,但是促進生核的效果很好。

如果含硫量過低(特別是生產HT時)可適量加入些硫鐵,但必須控制在要求的范圍內??傊畠灮僮鞒绦蛑傅木褪牵籂t料入爐的先后順序、熔煉中的溫度和出爐溫度的控制、化學成分的選控、以及強化孕育和復合孕育。

我們的產品是汽車輪轂,造型采用的是鐵模覆砂工藝,材質是QT450-10,其硬度是HB160-210,屬于鐵素體基體球鐵。但是用戶為了便于機械加工提高生產速度,除要求材質的抗拉強度及延長率合格之外,還要求鑄件的硬度≤200 HBW。

化學成分的選擇﹙%﹚:

CE4.6-4.8,C3.6-3.9,Si1.2-1.3(原)、2.65-2.9(終),Mn0.2-0.4,P≦0.05,S≤O.035(原)、≤0.022(終),RE(殘)0.02-0.04, Mg(殘)0.03-0.06。

在實際生產中,碳當量控制在中上線,硅力爭控制在上線,旨在提高鐵液的石墨化能力。

爐料加入順序、操作方法及溫度控制

先在爐底加入新生鐵,再加入廢鋼、增碳劑(根據爐料情況憑經驗而加,以防增碳劑堆積形成高溫層),邊熔化邊加廢鋼和增碳劑,盡可能在粒子鋼沒有加入之前,把增碳劑需要加入量的60-70%加完,最后加回爐料。在這段時間里,為了提高增碳劑的吸收率,消除鐵液中的遺傳性,宜采用大功率高溫熔化。

但上述加料方法也存在著兩個問題:當鐵水含碳量達到一定量時,再提高鐵水含碳量就困難了。

在熔煉后期加入粒子鋼,爐內金屬液噴濺嚴重,不能保證安全生產。因此也可以采用另一種加料順序,先熔化粒子鋼,邊熔化邊往外舀渣,當熔化完畢需加入量(一般40―50%)并達到一定溫度時,關閉電源,消除爐內液面“駝峰”,使液面平穩,熔渣就會往液面中心部聚集,這樣就便于舀凈熔渣。熔渣清除干凈之后,就可以適當多加些增碳劑。啟動電源高功率熔化,邊加廢鋼邊加增碳劑直至爐滿,加入部分硅鐵取樣分析。

球鐵金屬液是一種鐵水被飽和的Fe-C-Si-O之合金溶液,其內部存在化學反應與反應平衡問題:

2C+SiO2→Si+2CO

鐵水溫度高于平衡溫度時,反應向右,碳被氧化放出CO降碳,是還原反應。低于平衡溫度時反應向左,Si被氧化,形成SiO2黑渣,是氧化反應。平衡溫度在1390-1420℃之間。故推薦球化處理溫度在1450±20℃之間。根據上述資料分析增碳劑合適的加熱溫度,如果加熱溫度高于平衡溫度時,鐵液中的碳被氧化損耗增加,增碳劑的吸收率降低。當加熱溫度低于平衡溫度時,由于溫度較低,增碳劑的溶解擴散速度下降,因而增碳劑的吸收率也較低。另外,在實際生產操作中,很難把爐溫控制在平衡溫度線。提高爐溫可以加快增碳劑的溶解和擴散,有利于鐵液對碳的及時吸收而縮短碳的氧化時間,盡可能的使吸收遠大于損耗,同時也有利于提高熔化速度。所以在熔化前期我們采用大功率高溫熔化。

由于粒子鋼的含渣量太多,在熔化粒子鋼過程中,需要用特制的勺往外舀渣,所以增碳劑不宜與粒子鋼混裝熔化。當爐料熔化完畢并徹底清凈熔渣之后,留下10%的增碳劑作為波動可調空間,其余的全部加入,并加蓋保溫劑。

在爐內溫度升高增碳劑溶解被鐵液吸收后,清凈保溫劑及熔渣,加入部分硅鐵,在硅鐵上面覆蓋保溫劑,硅鐵的加入量,應在代入硅1.2%左右,這是因為廢鋼和粒子鋼的含硅量都很低,加入部分硅鐵,一是為了起到脫氧作用;二是為了縮小后期調整范圍,使成分含量更加準確;三是為了鐵液成分含量不超過熱分析儀的測量范圍,避免測量失敗。還需要說明的是,無論在任何階段需要同時添加增碳劑和硅鐵時,都要先加增碳劑,待增碳劑熔解擴散被吸收之后,再加增碳劑。這是因為硅具有排碳特性,即硅量的增加,降低了碳在鐵水中的溶解度。其目的還是為了提高增碳劑的吸收率。

綜上所述影響增碳劑吸收的因素有:

增碳劑的質量;

鐵水的含碳量;

鐵水含硅量;

爐料和鐵水質量(是否嚴重氧化);

爐工操作;

加入時間及加入方法;

爐溫控制;

當爐溫達到1320℃左右時,清凈液面熔渣,取樣倒入上海產的“賀利氏”牌熱分析儀樣杯中。在取樣分析的前后時間里,先清理干凈液面熔渣,適量加入一些回爐料;當熱分析儀結果出來后,調整原鐵水的碳、硅含量。

采取有效措施強化孕育:使用孕育劑的種類有75硅鐵、增碳劑、硅鈣鋇復合孕育劑。用增碳劑進行爐內、包內雙重孕育;用硅鐵進行沖入孕育及浮硅孕育;由大包倒入抬包時加入硅鈣鋇復合孕育劑進行隨流孕育。只要經熱分析儀測報含碳量不超上限,出爐前在爐內液面(也稱作預處理或預孕育)、在球化包底、以及球化反應結束扒渣后,在球鐵液面,酌情適量加放一些細顆粒(0.5―1.0mm)的增碳劑。盡管這樣作增碳劑的吸收率較低,但是確能生產大量的“外來晶核”,促進石墨化,有利于石墨的生成。

球化溫度的控制。球化溫度是根據鑄件的大小、鑄件壁的厚薄以及材質的不同而靈活掌握的。而且各單位又有各自的習慣作法。如山東臨沭興華機械廠用十噸包處理球鐵,當包底有一定的鐵水后,為降低下部鐵液溫度,延緩球化劑的起爆時間,減少反映沸騰,順包邊加放“熱鐵塊”,也便于降溫澆注大型鑄件,效果很好。濮陽一家鑄造廠,用廢鋼生產球鐵,出爐溫度1550℃,當包內鐵液達到3/4時,停止倒鐵水,讓球化包內進行球化反映,在包內作球化反映時,爐內剩余1/4的鐵水繼續升溫,包內反映結束并清理浮渣,加孕育劑后再出爐內剩余1/4的鐵液,這時爐內鐵液溫度已是1570℃,用這種方法作球化處理,生產出的鑄件內在質量好,無氣孔等鑄造缺陷。我們在出爐之前的熔化過程中,要經歷一個先高溫后低溫的過程,先高溫便于消除鐵液中的“遺傳性”和促進增碳劑的吸收,后適當低溫便于晶核的復生和球化處理。我們在生產實踐中,原來的球化處理溫度控制在1560-1570℃(用光學測溫儀),生產出鑄件的硬度偏高,其硬度常在200HBW左右徘徊,時而硬度還有超標現象而影響產品質量。2010年下半年,逐漸降低球化處理溫度,現在出爐溫度控制在1520℃±10℃左右。

產品為QT450-10輪轂,造型采用鐵模覆砂工藝, 球鐵的球化級別1-3級,石墨大小6-7級,石墨球密而分布均勻,硬度HB170-190,硬度很少有超過HB200的。鑄件實體切割取樣作物理實驗,抗拉強度≥500MPa(常在500 MPa左右),延長率13%-16%(最高可達22%)

文章轉自鑄造聯盟.